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Abstract—The large-scale collection of individuals’ mobility data
poses serious privacy concerns. Instead of perturbing data by
adding noise to the raw location data to preserve privacy of individ-
uals, we propose an approach that achieves privacy-preservation
at the statistics level of aggregating mobility datasets with the
probabilistic data structure Count-Min Sketch (CMS) [1], which has
been widely used to provide efficient statistic functions with a tun-
able error bound. We use CMS to estimate the population density
distributions in the mobility datasets, where the error bound deter-
mines utility guarantees. We develop P4Mobi, a novel Probabilistic
Privacy-Preserving Publishing framework for Mobility datasets
that protects individuals’ privacy while complying to a specific
utility requirement. We empirically validate the performance of
P4Mobi in terms of utility and privacy-preservation by demon-
strating its resilience against a recently proposed reconstruction
attack model using two real-world datasets. We compare P4Mobi
to two state-of-the-art methods and show that with the same level
of privacy achieved against our attack model, P4Mobi significantly
improves the utility of the published mobility datasets by up to 20%.
We also provide a theoretical estimate of the utility achieved by
P4Mobi. We found a very consistent match between the estimated
and empirical utility of P4Mobi as evaluated on two datasets.

Index Terms—Mobility datasets, count-min sketch, privacy,
utility, aggregation, data publishing.

I. INTRODUCTION

W ITH the increasing popularity of mobile devices geared
with Internet access and GPS functionalities, a wide

range of location-based services (LBSs) has emerged in the last
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decade [2]–[4]. Examples of applications range from cost ef-
fective transportation and traffic-aware recommendations (e.g.,
Google Map [5], TomTom [6]), to location-based social net-
works [7]–[9]. These LBSs are powered by mining or analysing
the large-scale collection of individuals’ mobility data.

Individuals’ mobility data reflect the users’ trajectories, i.e.,
the places the users have visited during a period of time. How-
ever, they are of significant value and represent a sensitive piece
of information as they can be easily linked to a variety of
additional personal information, such as occupation, life style,
health issues as well as political and religious beliefs [10], [11].
For instance, Krumm et al. [10] showed that based on two-weeks
GPS traces from 172 individuals, the home addresses (with
median error below 60 meters) and some identities of these
individuals (with success rate above 5%) can be successfully
inferred by joining GPS traces with a reverse geocoder [12] and
a Web-based whitepage directory. In [13], Gambs et al. built
a Mobility Markov Chain (MMC) from the observed mobility
traces in the training phase and used the MMC to infer the
identity of a particular individual behind a set of mobility traces
with a success rate of up to 45%.

In order to overcome the growing privacy concerns and issues
that preclude the use of mobility data for LBSs, one approach
is to use aggregation of the mobility data of all users prior
to the data publishing [14], i.e., only the population density
distributions are disclosed. However, the accurate population
density distributions obtained from simple aggregation methods
are vulnerable to a recently proposed trajectory reconstruction
attack [15], which exploits the uniqueness and regularity charac-
teristics of human mobility and recovers individuals’ trajectories
by associating the same users’ mobility records in the neigh-
bouring time slots. The sensitive information of individuals,
e.g., their home address or identities, can then be revealed by
linking some background knowledge about the individuals with
the reconstructed trajectories.

Alternatively, methods relying on random noise perturbation
of the location data have been proposed. [16] for instance aims
to provide differential privacy (DP) guarantees to the aggregated
mobility dataset. However, as shown later in Section V-D, this
DP-based method incurs significant utility loss in the result-
ing population density distributions. In this paper, we propose
a Probabilistic Privacy-Preserving framework for Publishing
Mobility datasets (referred as P4Mobi) that not only protects
published aggregated mobility datasets against reconstruction
attacks but comes with an improved utility of the published

0018-9545 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on February 03,2021 at 08:19:30 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-2772-4813
https://orcid.org/0000-0003-1385-1480
https://orcid.org/0000-0001-6713-7667
https://orcid.org/0000-0002-9339-0268
https://orcid.org/0000-0003-2714-0276
mailto:yangqing@hrbeu.edu.cn
mailto:shenyiran@hrbeu.edu.cn
mailto:zhangjianpei@hrbeu.edu.cn
mailto:dinusha.vatsalan@data61.csiro.au
mailto:dali.kaafar@mq.edu.au
mailto:wen.hu@unsw.edu.au


6988 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 69, NO. 7, JULY 2020

Fig. 1. To protect the sensitive personal information contained in the indi-
viduals’ trajectories, P4Mobi encodes raw mobility dataset and publishes the
estimated population density distributions with high practical utility to support
LBSs.

datasets than existing DP-based perturbation methods. In par-
ticular, our objective is to design a framework that strikes a
balance between privacy protection and hence resistance to
a recently proposed reconstruction attack [15], and utility
compared to a widely accepted DP-based method illustrated
in [16]. The novelty behind P4Mobi’s approach is to achieve
privacy-preservation at the statistics level of aggregation with
the probabilistic data structure Count-Min Sketch (CMS) [1]. To
protect the aggregation of mobility data, the traditional methods
often firstly operate on the raw data, such as adding noise to the
location/position, and then in the statistic step, they simply count
the number of users at different locations. However, P4Mobi
breaks the traditional aggregation rules, which count the number
of users directly, it employs CMS and protects the mobility
data in the statistics step.CMS has been widely used to provide
efficient statistic functions with a tunable error bound. We then
use the CMS to estimate the population density distributions
in the mobility datasets, where the error bound provides utility
guarantees to the estimated population distributions.

An overview of P4Mobi is shown in Fig. 1. The aim is to
achieve privacy-preservation and tunable utility of mobility
data. CMS allows the “encoded” counts of users in different
locations (density) to be estimated with guaranteed utility loss
(controlled by the parameters of CMS). The intuition behind
using CMS is that (i) the utility loss it incurs (measured as the
mismatch between the actual and estimated population density
distribution) would provide improved privacy preservation to the
individual users’ locations in the aggregated datasets against the
reconstruction attack proposed in [15], while (ii) the errors (i.e.
the estimated counts would differ from the actual counts) in CMS
based population density can be probabilistically controlled by
tuning the parameters of CMS, which enables P4Mobi to meet
the utility requirements.

In particular, a dataset custodian aiming to share or release a
mobility dataset to support a third party LBS may first determine
the minimal utility requirement needed, and then adjusts the
parameters of P4Mobi accordingly and encode the raw mobility
data into the CMS data structure.

The main contributions of this paper are:
� We propose P4Mobi, a Probabilistic Privacy-Preserving

Publishing framework that encodes Mobility datasets and
publishes their estimated population density distributions
using CMS. To the best of our knowledge, this is the first
piece of work addressing the privacy issues of the recon-
struction attacks on aggregated mobility datasets while

preserving a reasonable degree of practical utility as a
constraint while releasing the dataset.

� We formulate the utility loss of P4Mobi in terms of Proba-
bility of Collisions (PoC) using the key CMS parameters,
and then deduce the relationship between PoC and the
utility of the published datasets, so that it allows conve-
niently to tune the parameter settings of CMS according to
different requirements of utility.

� We extensively evaluate the performance of P4Mobi first
against the reconstruction attack (measured as the recon-
struction errors) and then as a tradeoff between privacy
and utility using two real-world mobility datasets collected
from different application scenarios. We compare P4Mobi
to two different approaches. First one is a simple mobility
dataset aggregation technique proposed in [14] referred
as (S-MDA) and the second one is the DP-based geo-
indistinguishable Mobility Dataset Aggregation approach
(referred as DP-MDA) [16]. The S-MDA method serves as
the benchmark for our utility evaluation as it is assumed to
be 100% accurate in terms of published population density.
The DP-MDA method provides improved privacy against
the reconstruction attack [15] at the cost of some utility
loss. We show that P4Mobi is able to improve the utility by
up to 20%when maintaining the same privacy preservation
performance against reconstruction attacks.

� Finally, we validate the practical usage of the estimated
utility guarantee on real-world datasets under different
parameter settings. The results show that the empirical
utility can be well approximated by our estimate and the
correlation between the empirical and theoretical utility
is consistently over 98%, which indicates that the key
CMS parameters can be tuned according to different util-
ity requirements without repeatedly processing the whole
dataset to find the parameter setting satisfying the utility
requirement.

The rest of the paper is organised as follows. Section II pro-
vides some background material including a brief introduction
to CMS and an overview of two state-of-the-art methods for
privacy-preserving publishing of mobility datasets, which we
compare P4Mobi to. Section III describes the threat model and
introduces the trajectory resconstruction attack we focus on
in this paper. Section IV presents the framework of P4Mobi
and analyses the privacy and utility-preserving properties of
our proposed approach. P4Mobi is empirically evaluated in
Section V, and Section VII concludes the paper.

II. BACKGROUND

A. The Count-Min Sketch Data Structure

Count-Min Sketch [1] (CMS) is a probabilistic data structure
typically used to efficiently store (encode) the frequencies of
events (referred also as items) in a database. The two major
components of CMS are: (i) encoding or updating of items in
the sketch and (ii) estimating the counts of encoded items in the
sketch.

1) Encoding and Updating: Given a pair of parameters
(θ, δ), the sketch parameters can be set as w = �e/θ� and
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d = �ln(1/δ)�, where e is Euler’s number, θ and δ mean that
the error in answering a query is within a factor of θ with
probability 1− δ, w and d indicate the width and depth of
the sketch. All the entries of the sketch are initialised to zeros.
Before the encoding and updating procedure, d hash functions
h1, h2, .., hj , .., hd : {0, 1}∗ → {0, 1}w, are chosen uniformly
from a pairwise-independent hash family [1].

To update the item i with the count ci in the sketch, the
corresponding entry in each row is incremented by ci. The
position of the entry to be updated in each row is determined
by the output of corresponding hash function, e.g., the position
of the entry in the jth row is the output of the jth hash function,
i.e., hj(i). To be more specific, to update the count ci of item i
in the sketch, for the jth row,

CMS[j, hj(i)]← CMS[j, hj(i)] + ci, (1)

where CMS is the sketch to store the statistics of the items. The
sketch is updated iteratively until all the items are considered. It
is worth noting that, different items can be updated to the same
entry in one row after applying hash functions, which causes the
so-called collisions. Collisions lead to false positive probability,
which will be discussed in detail in Section IV-B.

2) Estimating Counts: After updating all items in the CMS,
the final count of each item can be estimated. In the estimation
procedure, the minimal value of all the entries corresponding to
an item from different rows across the whole sketch is regarded
as the final count of the very item (corresponds to the term count-
min). Formally, for item i, its estimated count ĉi is the minimum
of all the entries related to item i from all rows of CMS, i.e.,

ĉi =
d

min
j=1

CMS[j, hj(i)]. (2)

As different items can be mapped to the same entry of the
sketch, the estimated counts of the items are always larger than
or equal to their actual counts. In other words, CMS allows false
positives, but not false negatives, which means the estimated
count is larger than or equal (if no collision) to the actual count.
This is important in certain applications, for example, in disease
outbreak detection systems that aim to issue alerts when the
consumption of a certain drug exceeds a threshold at all or some
of the hospitals. In such applications, false negatives have more
cost than false positives. The same applies to other example
applications of transport planning and traffic management.

B. The Mobility Data Aggregation Method (S-MDA)

In order to protect individuals’ privacy, several aggregation
methods, which generally summarise or anonymise individuals’
location traces prior to releasing them have been developed.

One simple approach is aggregating mobility data [14] by
simply counting the number of users within some area during
specific time period, and then only the aggregated results are
published. The aggregated results are the population density
distributions which can be easily utilised to support many LBS
applications.

S-MDA provides useful summary information (without any
utility loss) that can support a wide range of statistical functions,

such as predicting events, studying the effect of “shocks” in
transport and detecting traffic anomalies. After aggregating all
the users’ mobility data together, it is expected to be highly
unlikely to seek out a specific user’s trajectory. Therefore, it
provides some sort of guarantee on privacy-preserving of indi-
vidual’s mobility data until the emergence of the reconstruction
attack algorithm proposed in [15].

C. The Geo-Indistinguishability Method

In [16] Andrés et al. propose a differentially private [17]
method for protecting location-based data. The method gu-
rantees Geo-indistinguishability by perturbing the data with a
differentially private mechanism K that remaps each location
point x to the closest point (by adding noise) in the discrete
domain. Authors use Laplacian noise [18] so that the mechanism
K satisfies dp(K(x),K(x′)) ≤ εde(x, x

′) for all x, x′, where
dp(K(x),K(x′)) is defined as the multiplicative distance be-
tween two distributions K(x) and K(x′), and de(x, x

′) denotes
the Euclidean distance between two different points x and x′.

III. THREAT MODEL

A. Overview

In [15], authors present that the aggregating mobility dataset
does not preserve users’ privacy, since a user’s mobility pattern is
regular while different from others’. Based on the characteristics
of human mobility, they transform the population density dis-
tribution to a location-time format and propose the trajectories
reconstruction attack that iteratively associates the same users’
mobility records in the neighbouring time slots. They exploit
the regularity of mobility data to estimate the next location
of the user and choose the location in the aggregated data
with the largest similarity to the estimated next location as the
reconstructed next location according to the uniqueness pattern
of human mobility data.

To recover trajectories from the aggregated dataset, the
first step is transforming the population density distribution
Ct = [ct1, c

t
2, . . ., c

t
i, . . ., c

t
q] into a location-time record P t =

[pt1, p
t
2, . . ., p

t
j , . . ., p

t
m], where cti represents the number of mo-

bile users at location i during time slot t, ptj represents the
location of the jth user at time slot t, and q represents the
total number of possible locations, while m is the total number
of users . To link the location-time records that represent the
same user across different time slots, the reconstruction attack
is modeled as a Linear Sum Assignment Problem [19], which
has been extensively studied and can be solved in polynomial
time based on Hungarian algorithm [20].

B. Reconstructing Individuals’ Trajectories

Specifically, we assume a set of recovered trajectories un-
til time slot t as St = [st1, s

t
2, . . ., s

t
k, . . ., s

t
m], where stk =

[l1k, l
2
k, . . ., l

t
k] is the kth recovered trajectory and ltk is the recov-

ered location at time slot t. To recover the next position lt+1
k from

the location-time records P t+1 = [pt+1
1 , pt+1

2 , . . ., pt+1
m ], an es-

timated location p̂t+1
k is first generated based on the continuity
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Fig. 2. Procedure of reconstruction attack on transformed mobility dataset.

feature of human mobility, and then the location in the location-
time record P t+1 with the largest likelihood to the estimated
location p̂t+1

k will be chosen as the recovered next location, i.e.,
lt+1
k . In the daytime, users move frequently, and their locations

are continuous, which makes it possible to estimate the next
location with the current location and the velocity. Formally,
for the kth(1 ≤ k ≤ m) recovered trajectory, the estimated
location is

p̂t+1
k = ltk + (ltk − lt−1

k ). (3)

To quantify the likelihood between the estimated location and
those in the location-time records, Fengli et al. [15] formulate the
cost matrixGt = {gti,j}m×m, where gti,j is the distance between
the estimated next location p̂t+1

i and the actual location pt+1
j .

Fig. 2 presents an intuitive demonstration to explain the pro-
cedure of recovering the trajectories from transformed location-
time mobility dataset. In this example, an aggregated dataset
with three possible locations and three time slots is shown. We
assume that trajectories until time slot t2 have been recovered,
and then the estimations of the next locations are generated
based on the continuity feature of mobility data as shown in
Fig. 2(a). The distance between the estimated locations and
those in location-time records (Fig. 2(b)) is formulated as the
cost matrix. In the last step, Hungarian algorithm is applied to
minimise the cost matrix and find each trajectory’s associated
location in the location-time record. Fig. 2(c) demonstrates the
final recovered trajectories and those annotated with the same
colour and shape belong to the same trajectory.

In our prototype implementation of the reconstruction attack
for the experimental evaluation, we consider that the adversary,
trying to recover users’ trajectories from published aggregated
mobility datasets, has some background knowledge of the target
users. Generally, the adversary could have different kinds of
background knowledge based on various sources such as social
networks. However, in our specific attack model, to ease the
presentation, we assume that the adversary has the target users’
location information in the first two time slots as the background
knowledge.

IV. PROBABILISTIC PRIVACY-PRESERVING PUBLISHING

FRAMEWORK

P4Mobi is composed of four major blocks: raw data pre-
processing, sketch initialisation, mobility data encoding and
population density distribution estimation. In this section, we
first present the main modules and then theoretically quantify
and analyse the privacy and utility of the published mobility

dataset using the parameters of CMS, i.e., the number of hash
functions d and the output range w of the hash functions.

A. Framework of P4Mobi

Fig. 3 presents the overall framework of P4Mobi.
1) Raw Data Preprocessing: Trajectories corresponding to

raw mobility data can be discontinued or mislabeled, duplicated
or altogether missing. This often leads to inconsistencies and
poor utilities. Here we present the steps in preprocessing the
mobility data in P4Mobi.

We assume that the whole covering area is divided into a grid
of q blocks (in the example presented in Fig. 3, the value of
q is 35) and the total duration of the dataset is divided into n
time slots, i.e., {t1, t2,.., tn}. During preprocessing, we need to
determine the locations of the users at each time slot, the specific
steps are: (1) each GPS record is assigned with a space block and
a time slot according to its GPS reading and timestamp; (2) for
the users having multiple different locations (space blocks) at
the same time slot due to duplication or erroneous readings, we
choose the space block having the highest occurrence frequency
to represent the real location of the user at this time slot; (3) if a
time slot of a user is vacant due to missing points, we use linear
interpolation to determine its location. Fig. 3 (b) demonstrates
the preprocessed mobility data records in a matrix-formation
where {t1, t2, .., tn} are the time slots, {u1, u2, .., um} are dif-
ferent users and each entry of the matrix is the location of a user
at some specific time slot.

2) Sketch Initialisation: At the time slot ti, we first create
a d× w matrix, i.e., a sketch, and then initialise all the entries
as zeros for future processing. The parameters d and w of the
sketch refer to the number of hash functions and their output
range, respectively. The choice of d and w determines the trade-
off between privacy and utility of the final aggregated mobility
dataset. In the initialisation step, we set the parameters d and w
given the targeted utility level which is theoretically formulated
using d and w in Section IV-B.

3) Mobility Data Encoding: After preprocessing, mobility
data records are grouped into multiple sets of location points:
L1, L2, . . ., Li, . . ., Ln, where Li = [li,1, li,2, . . ., li,j , . . ., li,m]
is a collection of all users’ locations at time slot ti. In mobility
data encoding step, we use the set of locations Li to update
the sketch corresponding to time slot ti which is initialised in
the previous step. The mobility data is encoded into the sketch
using d different hash functions which are chosen uniformly
at random from a pairwise-independent family [1]. In details,
for each element li,j ∈ Li, we apply d hash functions on li,j
iteratively to find the position of the entry to be updated in the
sketch. For example, thekth hash function corresponds to thekth

row of the sketch and the output hk(li,j) determines the column
position, i.e., the entry at (k, hk(li,j)) needs to be updated: the
value of corresponding entry is incremented by 1. The above
process can be formulated as,

∀1 ≤ k ≤ d : CMS[k, hk(li,j)]← CMS[k, hk(li,j)] + 1,
(4)

where CMS[k, hk(li,j)] is the value of entry at position
(k, hk(li,j))of the sketch. As shown in Fig. 3 (d), a location point

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on February 03,2021 at 08:19:30 UTC from IEEE Xplore.  Restrictions apply. 



YANG et al.: P4MoBi: A PROBABILISTIC PRIVACY-PRESERVING FRAMEWORK FOR PUBLISHING MOBILITY DATASETS 6991

Fig. 3. Framework of P4Mobi.

li,j is used to update multiple entries (one entry in each row)
using multiple hash functions. After mobility data encoding,
we obtain multiple sketches from the mobility dataset and each
sketch corresponds to one specific time slot.

The procedure of encoding mobility data into sketches is
essential for preserving privacy in the published mobility dataset.
The targeted level of privacy and utility can be achieved through
tuning the parameters d and w, or more intuitively, controlling
the number of hash functions and their output range, respec-
tively. We will discuss it in detail in Section IV-B.

4) Population Distribution Estimation Through Enquiry: At
the final step, the sketches are used to estimate the population
distribution at each time slot, through a mechanism termed as
enquiry. We propose the enquiry function enquiry(Bj,i) to
estimate the number of users at the block Bj(1 ≤ j ≤ q) during
time slot ti. As shown in Fig. 3 (e), function enquiry(Bj,i) first
finds all the entries related to the location of the block Bj,i in
the sketch based on the outputs of d hash functions used in the
data encoding step. Then it compares the values of these entries
to find the minimum to represent the estimated number of users
at block Bj,i. Formally,

enquiry(Bj,i) =
d

min
k=1

CMS[k, hk(Bj,i)]. (5)

This enquiry step finds the minimum among the values of the
entries corresponding to the same location (block), therefore,
with larger d (or more hash functions), more candidate values
are obtained when searching for the minimum. As the minimum
is accepted, the final estimated result will be different from the
ground truth if all of the d candidate values are larger than the
ground truth value due to collisions.

B. Privacy and Utility Analysis of P4Mobi

Next we theoretically analyse the privacy and utility-
preserving properties of our proposed P4Mobi framework and
formulate how the parameters, i.e., the depth and width pair

(d,w) (in other words, the number of hash functions and their
output range) determine the privacy and utility performance of
the published dataset.

We first consider two extreme scenarios with the same original
mobility dataset consisting of q˜(q > 1) location blocks and m
users. In the first scenario, both parameters w and d are set
to be 1, which indicates only one hash function is used and
the output of the hash function is always 1 irrespective of the
input location. Therefore the outputs of the enquiry function will
also be the same for all location blocks, i.e., m. The published
population distribution has no practical use in this scenario.
While to the other extreme scenario, we set the parameters w
and d the same as the number of locations q, which indicates
each original location has its unique position in each row of the
sketch (we assume no collision in this scenario). The population
distribution generated by P4Mobi under this situation is the same
as that resulting from simple aggregation method [14], which has
high utility, but is significantly susceptible to the reconstruction
attack proposed in [15].

From the privacy perspective, the manipulations of P4Mobi
can be regarded as adding some noise into mobility datasets
in terms of collisions, i.e., opportunistically mapping/encoding
different physical locations into the same position of sketch.
Collisions could lead the estimated population distribution de-
viating from the actual value when enquiring a location block
using the encoded sketches. For example, in the first extreme
scenario described above, the collision rate is maximum as all
the physical locations are mapped to the same position in the
sketch. The collision rate is zero in the second extreme scenario
as all the input physical locations have their unique positions in
the sketch. The probability of collisions decreases when w and
d increase.

We now formulate the Probability of Collisions (PoC) of
P4Mobi using the CMS parameters. We assume the number
of distinct locations is q, the probability of the ith(1 ≤ i ≤ q)
location loci in the mobility dataset being hash-mapped to any
one position in one row of sketch is 1/w, the PoC of the ith
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location Prc(loci) is,

Prc(loci) =

(
1−

(
1− 1

w

)q−1
)d

, ∀i ∈ q, (6)

where (1− 1
w )q−1 is the probability that the other (q − 1) lo-

cations (except loci) are not mapped to the position of loci in
one row of sketch, which means loci is mapped to a position
with value of zero (not occupied by other elements) in this
row. The probability that loci is mapped to a position with
non-zero value (i.e., a collision occurs) in this row of sketch
is therefore (1− (1− 1

w )q−1). In the final step of P4Mobi,
we use enquiry(Bj,i) to find the minimum among values of
the entries determined by the outputs of the d hash functions
as the estimated number of users at location j in time slot i.
Therefore, a false positive or collision (the minimum value is
larger than the ground truth) only occurs when collision happens
in every row of sketch, i.e., all independent d hash functions
map loci to the positions with non-zero values and hence the
PoC is (1− (1− 1

w )q−1)d. In the scenario of mobility dataset,
the number of distinct locations q for a certain time slot is not
user defined but can be easily obtained from preprocessed raw
data. We therefore consider the parametersw and d as the impact
factors of PoC.

From the utility perspective, we aim for an estimation of the
population distribution that is as accurate as possible. As in [1],
we assume the actual population distribution of q locations is
C = {c1, c2, . . ., ci, . . .cq} and the corresponding estimation is
Ĉ = {ĉ1, ĉ2, . . ., ĉi, . . .ĉq}. Given two small positive values θ
and δ range in (0,1), we need to set the number of hash functions
d = �ln(1/δ)� and the range of output w = �e/θ�, where e is
Euler’s number, so that for all ci ∈ C, there exist an estimation
ĉi satisfying

|ĉi − ci| ≤ θ||Ĉ||1, (7)

with probability at least 1− δ. Here ||Ĉ||1 is �1 norm of the
estimated population distribution, i.e. the sum of the estimated
users numbers of all q locations. |ĉi − ci| is the difference
between the estimated population and the ground truth, which
can be regarded as the utility loss. Intuitively, the smaller the
values of θ and δ are, the smaller the difference between the
estimated population and the actual population (e.g., smaller
utility loss) will be. Smaller θ and δ also indicate larger values
for w and d of CMS.

In practice, as P4Mobi publishes the estimated population
density distribution, i.e., the estimated number of users at each
location, the PoC of P4Mobi can be computed as,

PoC =
nd

n
, (8)

wherend is the number of locations in the published dataset with
more users than ground truth, i.e., number of collisions, and n
is the number of distinct locations in the published dataset. To
compute the utility of the published dataset, we compare it with
the actual population distribution. The utility of the processed
dataset is defined as the proportion of locations which have the

identical population estimation to the ground truth, i.e., without
any collision after being encoded into CMS, so that

utility =
n− nd

n
. (9)

This leads to

utility =
n− nd

n
= 1− nd

n
= 1− PoC, (10)

where PoC is controlled by the parameters of CMS. Therefore,
we can tune the parameters of CMS according to the utility
requirement. In essence, this shows that the smaller the values of
w and d, the larger the PoC (and the lesser the utility). Increasing
w and d leads to smaller PoC and better utility of the released
dataset.

Comparing to the state-of-the-art method based on the widely
used notion of differential privacy, our proposed P4Mobi seems
to be a little deficient in theoretical depth. However, the exper-
imental results shown in Section V demonstrate that P4Mobi
outperforms the differential privacy based method in terms of
privacy against the recently shown attack on mobility data and
utility. Besides, we also note that the threat model considered
in this paper is that the server is trusted while the querier is an
untrusted third party. In this setting, we show that the privacy
guarantees provided by probability of collisions are sufficient for
aggregated counts. In the future, we plan to extend our approach
for the threat model of untrusted server as well by providing
privacy guarantees for users’ input/updates to the server by using
local differential privacy, which is similar to approaches [21]
and [22], introduced by Google and Apple, respectively.

V. EVALUATION

We now evaluate the performance of P4Mobi, first against the
threat model described in Section III, then we demonstrate its
performance on estimating the population density distribution
of mobility datasets (utility). We also compare with other mo-
bility dataset aggregation approaches on the trade-off between
privacy and utility (under the threat model we consider in this
paper) and finally we empirically validate the accuracy of the
theoretical utility formulation or Probability of Collisions (PoC)
on estimating the practical utility in real world datasets.

A. Evaluation Metrics

We use the Reconstruction error to quantify the robustness of
P4Mobi under the reconstruction attacks. Reconstruction error
is defined as the Euclidean distance between the recovered users’
trajectories and the ground truth. Larger reconstruction errors
(distances) indicate less privacy leakage and better privacy pro-
tection.

We propose L-Jaccard Index, a location-based transformation
of Jaccard Index [23], to calculate the similarity between the
published datasets processed by P4Mobi or DP-MDA and the
ground truth as the metric of utility of the processed datasets.
The results demonstrate how well the published dataset supports
higher-level LBS applications for analysis and decision making
by exhibiting higher utility preserved in the published datasets.
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1) Reconstruction Error: The reconstruction attacks on the
aggregated mobility datasets aim to infer users’ private daily
routines by recovering their mobile trajectories. We use the
relative value of the average Euclidean distance (reconstruc-
tion error) between the recovered trajectories and the ground
truth corresponding to the length of the whole working area
(50km in our datasets) as a measure of the performance on
privacy-preservation. To compute the reconstruction error, we
first uniquely pair the recovered trajectories with the most similar
ground truth trajectories in terms of Euclidean distance between
vectors of trajectories. We use a greedy-based heuristic algo-
rithm [15] to achieve effective and efficient pairing. We then
compute the average value of all the Euclidean distances between
the paired trajectories and use its proportion to the scale of the
working area (50˜km) as the reconstruction error.

Formally, we denote the ground truth trajectory of the ith

(1 ≤ i ≤ m) user as si = [l1i , l
2
i , . . ., l

n
i ], where each element

represents the location of the user at the specific time slot and
the corresponding recovered trajectory as ŝi = [l̂1i , l̂

2
i , . . ., l̂

n
i ],

where n is the total number of time slots, m is the total number
of users in the mobility dataset and the scale of the working area
is 50˜km. The reconstruction error Er can be computed as,

Er =

∑m
i=1 ||(ŝi − si)||22

50×m
, (11)

where ||(ŝi − si)||22 is the Euclidean distance between the vec-
tors of recovered and ground truth trajectories. Larger recon-
struction error Er indicates better privacy protection perfor-
mance against the threat model.

2) Utility: As mentioned earlier, S-MDA simply counts the
statistics of the population density distribution without injecting
any additional noise. We treat it as having no utility loss. P4Mobi
and DP-MDA inject collisions and random noise, respectively,
during dataset aggregation, however, resulting in a loss of utility.

We propose L-Jaccard Index, which is a location-based trans-
formation of Jaccard Index [23], to quantify the utility of the
estimated datasets. The original Jaccard Index computes the
proportion of the intersections between different datasets for
comparing their similarity. In our paper, however, the application
scenario is mobile population density, where the actual location
information and the corresponding population density are both
important features in supporting LBSs applications. The location
information is ignored when we employ the original Jaccard
Index to compare the similarity between different datasets, so
we propose L-Jaccard Index, which considers both the location
information and population density to quantify the similarity
between population distributions in two mobility datasets by
extending the original Jaccard Index.

We calculate the L-Jaccard Index between the estimated and
real population density distributions by comparing the density
(count) values appended with the corresponding location infor-
mation. Formally, We denote the actual population density dis-
tribution of q locations from S-MDA at time slot ti (1 ≤ i ≤ n)
as Ci = [ci1, c

i
2, . . ., c

i
q] and the estimated ones from P4Mobi

or DP-MDA as Ĉi = [ĉi1, ĉ
i
2, . . ., ĉ

i
q], where each element is the

actual/ estimated number of users at some specific location. The
L-Jaccard Index between Ci and Ĉi can be computed as,

L_JI(Ci, Ĉi) =
iden(Ci, Ĉi)

q
, (12)

where iden(Ci, Ĉi) returns the number of elements in Ci and
Ĉi having identical location information and population density.
The L-Jaccard Index measures the similarity between the outputs
of P4Mobi or DP-MDA and S-MDA. Larger value of L-Jaccard
Index indicates higher utility. We compute the utility of the
published datasets as,

Utility =
1
n

n∑
i=1

L_JI(Ci, Ĉi), (13)

where n is the number of time slots in the dataset. Intuitively,
higher utility value corresponds to more accurate population
density distributions comparing with S-MDA (or ground truth)
and implies better practical usability.

B. Mobility Datasets

We use two real-world mobility datasets in our empirical eval-
uation to demonstrate the performance of P4Mobi on privacy and
utility-preserving properties for publishing aggregated mobility
datasets.

1) MoMo Mobile App Dataset (MoMo): MoMo dataset [24]
has been collected from the GPS of mobile devices using a very
popular social network application, MoMo, from 21 May, 2012
to 26 June, 2012, in Beijing, China. It contains approximately
3.89 million users’ check-in trajectories. Each record consists
of four attributes: user ID, timestamp, latitude and longitude.

2) San Francisco Cabs Dataset (SFC): SFC dataset [25]
contains mobility traces of taxi cabs in San Francisco, USA. It
includes GPS coordinates of approximately 500 taxis collected
over 30 days in the San Francisco bay area. Each record has four
attributes: cab ID, timestamp, latitude and longitude.

3) Dataset Preprocessing for Metadata: Our two real-world
datasets contain very dense spatio-temporal records of each
individual’s mobility trajectories. To obtain the metadata for
evaluation purpose, we trim both datasets. As during nighttime,
most individuals tend to not move too much, the mobility data
does not provide significant information to recover. Therefore,
we set the working period as from 9:00 to 17:00, and the
size of the whole working area is 50km × 50km. Discussion
in [15] indicates that the reconstruction algorithm is robust
under different spatial and temporal resolutions. We choose the
size of the space blocks to a moderate value of 2km in our
evaluation. According to different application scenarios (e.g.,
travelling speed) we set the duration of the time slots for the
two datasets as 30 minutes for MoMo and 2 minutes for SFC,
respectively, because on average cabs travel significantly more
dynamic and faster than human users. Then the corresponding
number of time slots are 16 and 240, respectively. An overview
of the two datasets is shown in Table I.

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on February 03,2021 at 08:19:30 UTC from IEEE Xplore.  Restrictions apply. 



6994 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 69, NO. 7, JULY 2020

TABLE I
METADATA OF THE TWO DATASETS

Fig. 4. The reconstruction error of DP-MDA under different noise factor ε.
(a) MoMo dataset. (b) SFC dataset.

C. Resilience Against the Reconstruction Attack

We first evaluate the reconstruction errors obtained for
S-MDA as a baseline. We apply the reconstruction algorithm on
the aggregated results of both MoMo and SFC datasets processed
by S-MDA and then compute the average Euclidean distance
between the reconstructed and ground truth trajectories. The
average reconstruction errors for MoMo and SFC datasets are
8.64% and 2%, respectively. The reconstruction errors from
S-MDA are represented as horizontal lines in Fig. 4 and Fig. 5
to benchmark the performance of the other two approaches. We
then evaluate the privacy-preserving performance of DP-MDA
against reconstruction attacks. Results are shown in Fig. 4. The
x-axis stands for the value of factor ε controlling the added
Laplacian noise while the y-axis stands for the reconstruction
error in percentage. The higher reconstruction error indicates
better performance on privacy-preservation. We vary ε from 0.2
to 1.6 and compute the corresponding reconstruction errors. The
results show that, in general, compared to the S-MDA, DP-MDA
achieves significantly better performance on both datasets for
all parameter (ε) values. Specifically, when ε < 0.6, DP-MDA
outperforms the benchmark by at least 2%, which is interpreted
as at least 1000 meters in real-world. This is not suprising as a

Fig. 5. The reconstruction error of P4Mobi on different size of sketch.
(a) MoMo dataset. (b) SFC dataset.

lower ε leads to a higher noise ratio, which makes the aggregated
results more difficult to be reconstructed.

As discussed in Section IV-B, the privacy level of P4Mobi
can be controlled by tuning the number of hash functions d and
their output range w. We gradually change the output range
w from 5 to 180 with a different number of hash functions
d = [10, 20, 30] and compute the corresponding reconstruction
errors. The results on two different datasets are shown in Fig. 5.
Compared with S-MDA that produce average reconstruction
errors of 8.64% for MoMo and 2% for SFC datasets, P4Mobi
yields higher reconstruction errors when w < 95 for all settings
of d. The performance gain grows rapidly when w decreases
below 50. For example, for the MoMo dataset, when we fix
d = 30 and w = 50, the corresponding reconstruction error is
over 21% which is significantly higher than S-MDA (8.64%).
The difference stands for 6.5km in real-world scenario.

We cannot compare the performance of P4Mobi and DP-
MDA directly at this stage because they adopt a different set
of parameters. However, intuitively, P4Mobi seems to achieve
significantly better performance when preserving privacy than
DP-MDA (comparing the value range of the y-axes in Fig. 4
and Fig. 5). To compare P4Mobi with other methods more
comprehensively, in the next section, we consider the utility-
preservation performance of these approaches.

D. Evaluation on the Utility-Preservation

This set of evaluations aim to validate the utility of the DP-
MDA and P4Mobi approaches when computing or estimating
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Fig. 6. Utility Performance of DP-MDA. (a) MoMo dataset. (b) SFC dataset

the population density distribution of the published mobility
datasets.

The evaluation of the utility metric is presented in Fig. 6.
The x-axis stands for the value of ε that controls the rate of
Laplacian noise added and a smaller ε indicates a higher noise
ratio. The y-axis stands for the average utility preserved by DP-
MDA in percentage. We vary ε from 0.2 to 1.6 and compute the
corresponding utility. We observe that the larger ε, the higher the
similarity between the two density distribution. For instance, in
Fig. 6, when ε is 1.6, the utility of DP-MDA is close to 80%
and 91% for MoMo and SFC, respectively. We then evaluate the
utility obtained by P4Mobi under different parameter settings.
The results are shown in Fig. 7. Again, we gradually change
the value of w from 5 to 180 when d = [10, 20, 30] and compute
the corresponding utility. The results in Fig. 7 show that for both
datasets, the utility increases steeply with the growing value ofw
for all three values of d when w < 50. For example, in Fig. 7(a),
when we set d = 30 and increase w from 5 to 50, the utility
grows sharply from 0% to 95%. On the other side, when w is
fixed, a larger d leads to a higher utility.

E. Privacy-Utility Trade-Off Comparison

We further investigate and compare the performance of
P4Mobi and DP-MDA on the trade-off between privacy and
utility-preserving which is evaluated in terms of reconstruction
error and utility. In the evaluation, we set d = 30 and change
the value of w to compute the corresponding reconstruction
error and utility of P4Mobi. The results of the evaluations on
two real-world datasets are shown in Fig. 8, where the x-axis
stands for the reconstruction error and the y-axis is the utility.
As discussed before, higher values for both reconstruction error

Fig. 7. Utility Performance of P4Mobi. (a) MoMo dataset (b) SFC dataset

Fig. 8. Comparison of P4Mobi and DP-MDA over Privacy-Utility Trade-off.
a) MoMo dataset (b) SFC dataset
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and utility (higher privacy and practical utility) are desired. From
the results shown in Fig. 8, we can observe that, with the same
reconstruction error, P4Mobi achieves up to 20% and 10%
higherutility than that of DP-MDA on MoMo and SFC datasets,
respectively. For example, as the results shown in Fig. 8(a), even
when the reconstruction error (refers to privacy-preserving) is as
high as 16% (which is almost twice of the benchmark, S-MDA,
i.e., 8.64% for MoMo dataset), P4Mobi still preserves more
than 95% utility, which is only 75% for DP-MDA with the same
reconstruction error. Similar results are obtained for P4Mobi
with d = 10 and d = 20. We do not provide these results in this
paper due to space limitation.

At last, we conclude the comparison of different privacy-
preserving mobility dataset publishing approaches by presenting
some examples of the published population density maps from
the three approaches with two different mobility datasets in
Fig. 10. We use colours with different gradations to present
the different numbers of users on the map, and the lighter the
colour is, the larger the number of users in that location is. The
examples shown on the left column are from S-MDA, which
are regarded as accurate benchmark of the population density
distribution, i.e., the utility is 100%. Examples from DP-MDA
are in the middle while those from P4Mobi are on the right. By
comparing the maps across columns, an intuitive observation is
that the density maps from P4Mobi are significantly more similar
to the benchmark (S-MDA) compared with DP-MDA (98%
v.s. 75% for MoMo and 90% v.s. 84.5% for SFC) meanwhile
they achieve better privacy-preserving against the attack model
(reconstruction error: 21% v.s. 11.5% for MoMo and 6.8% v.s.
5.4% for SFC).

F. Evaluation on Utility Estimation

We propose the theoretical formulation of the utility derived
from PoC in Section IV-B to estimate the practical utility of
population distributions to be published, so that the followers are
able to determine the suitable CMS parameter settings conve-
niently according to their utility requirements. In this section, we
evaluate the consistency of the theoretical and empirical utility
of P4Mobi under different parameter settings.

The evaluation results are presented in Fig. 9. Across different
parameter settings, we observe that the tendency of theoretical
utility (calculated using Equation 6 and Equation 10) is always
consistent with the empirical results, and as expected, with the
same d, utility increases with the increase of w. To provide more
concrete evidence, we also compute the correlation between the
curves of theoretical and empirical utility with different values
of d. The correlation results are over 98% which indicate a close
matching between empirical and theoretical utility.

VI. RELATED WORKS

Location-based services (LBSs) support human daily life
by studying mobility patterns from trillions of trails and foot-
prints [26]. Urban planning [27], traffic forecasting [28], market
campaign [29], prediction of epidemics [30] and designing of
mobile network protocols [31] are all powered by citizen’s
trajectories. Such services not only bring convenience to

Fig. 9. Theoretical and empirical utility of P4Mobi. (a) MoMo dataset (b) SFC
dataset

people’s life, but also followed by privacy issues towards in-
dividual users.

To address the privacy issues in releasing mobility datasets for
empowering LBSs. Some researches focus on the raw mobility
data, i.e. encrypting or encoding the trajectory records before
releasing. Laplacian noise is used in [16] to publish geo-
indistinguishable mobility datasets that achieve ε-differential
privacy. In this work, noise is added drawn from Laplace distri-
bution to satisfy differential privacy and the location of each user
is re-mapped. Another method is proposed in [32] to combine
differential privacy and k-anonymisation by adding a random
sampling step before performing “secure” k-anonymisation for
publishing mobility data. Zhang et al. [33]proposed a dual-K
mechanism, which inserts multiple anonymizers between the
user and LBSs to protect the user’s trajectory privacy. Markov
model is utilized in [34] to predict the next query location
according to the user mobility and form spatial K-anonymity
to enhance user location privacy. Direct operations on the raw
mobility data impacts the utility of the published datasets, and
the trade-off between utility and privacy is a common challenge
for these techniques.
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Fig. 10. Examples of population density distributions obtained from S-MDA (left column), DP-MDA (middle column) and P4Mobi (right column). (a) MoMo
dataset. (b) SFC dataset

Some researches focus on the statistics of mobility datasets.
They protect the users’ trajectoy records by releasing the sta-
tistical properties. For instance, [14] introduces the French
XData project that only reports the population density of each
region. Mobile operators in China share the real-time counts
of mobile users at specific locations with some real estate
companies [35]. Ma et al. [36] proposed a mechanism called
RPTR, which protects a vehicle’s real-time trajectory data re-
lease. It samples the vehicles density distribution data, and
predicts the next release based on the previous sampled data.
Fan et al. [37] proposed a sampling processing method based on
Kalman filter to obtain a trade-off between the privacy degree
and system performance, which allows differentially private
aggregate sharing and time-series analysis. Yang et al. [38]
proposed l−trajectory privacy to achieve user-level privacy in
each l length trajectory statistics, they made the privacy budget
for each user assigned to their l-length trajectory. km-anonymity
and p-confidentiality are introduced in [39] to protect the privacy
of population density. All of these approaches protect the users’
privacy based on statistic properties of the raw trajectory data,
which could incur privacy issues if the statistic properties are
revealed.

VII. CONCLUSION

In this paper, we propose P4Mobi, a Probabilistic Privacy-
Preserving Publishing framework for Mobility datasets.
P4Mobi is designed by facilitating the efficient data structure
Count-Min Sketch (CMS). It publishes the estimated population
distribution derived from the mobility datasets to support LBSs
with tunable utility. As our extensive evaluations on two different

typical mobility datasets have shown, P4Mobi achieves up to
20% and 10% higher utility, respectively, with the same re-
construction error premise against reconstruction attacks on ag-
gregated datasets, comparing with the state-of-the-art mobility
dataset aggregation and privacy-preserving approaches. At last,
we use the two real-world datasets to validate that the theoretical
formulation of utility is able to predict the practical utility of the
dataset processed by P4Mobi under different parameter settings
accurately which enables the followers choosing parameters
according to their required utility without processing the datasets
repeatedly to find the suitable settings.

As future work, we aim to investigate other probabilistic data
structures, such as counting Bloom filters [40] and Cuckoo fil-
ters [41], for privacy-preserving publishing of mobility datasets.
Another direction of our future work is to study other advanced
reconstruction attacks and evaluate the performance of our ap-
proach in resilient against those threat models. Last but not least,
considering the privacy concerns during the communication
between individual devices and mobility data collectors (such as
the mobile operators), we will extend the application of our ap-
proach to the individual level, which will be implemented on the
individual’s devices (such as smartphones, smart wearables and
other internet-enabled devices) to protect individuals’ mobility
data before being collected.
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